#UPNAResponde/#NUPekErantzun: Transmisores y supertransmisores. Preguntas esperando respuestas
Responde: Antonio G. Pisabarro De Lucas, catedrático de Microbiología en el Departamento de Ciencias de la Salud y director del Instituto IMAB (Institute for Multidisciplinary Research in Applied Biology-Instituto de Investigación Multidisciplinar en Biología Aplicada) de la Universidad Pública de Navarra (UPNA).
¿Cómo se transmite una enfermedad contagiosa para que se produzca una epidemia? ¿Por qué hay algunas enfermedades muy epidémicas mientras que otras no lo son?
Para que una enfermedad infecciosa produzca una epidemia es necesario que el patógeno se transmita entre personas. El tétanos, por ejemplo, está causado por una bacteria que no puede transmitirse y, por consiguiente, no es epidémico. El número de personas sanas a las que contagia un enfermo se llama tasa reproductiva básica de la enfermedad (R0) y permite estimar su velocidad de propagación. Para que se produzca una epidemia, R0 debe ser mayor de 1,0. Cuanto más grande sea R0, más rápido se propagará la epidemia y más difícil será controlarla. Las primeras estimaciones de R0 para covid-19 oscilaban entre 2,5 y 3,6. Como comparación, el valor de R0 de la gripe estacional está en torno a 1,3. Hay enfermedades infecciosas extremadamente contagiosas como el sarampión o la varicela con valores de R0 superiores a 10. El valor R0 no es constante, sino que depende de factores tales como el tamaño de la población susceptible y la eficiencia del mecanismo de transmisión. Así, por ejemplo, el distanciamiento social o la vacunación permiten reducir R0 al dificultar la transmisión efectiva del coronavirus. Los últimos datos publicados por el Centro Nacional de Epidemiología para covid-19 ofrecen un R0 de 0,8 a nivel nacional en España, un valor por debajo del umbral necesario para mantener la epidemia.
R0 es un promedio que no nos da una visión completa de cómo se produce la transmisión en realidad. En algunas enfermedades infecciosas, no todos los enfermos son igualmente contagiosos, sino que algunos son transmisores activos mientras otros son muy poco contagiosos. Cuando ocurre esto, el contagio se produce por grupos o racimos (clusters) en los que unos pocos supertransmisores contagian a muchas personas en muy poco tiempo. En el caso de la Covid-19, ha habido casos en los que una persona ha contagiado a más de 50 en dos horas de actividad conjunta. En este, como en otros racimos estudiados, el contagio no resulta de la repetición de contactos causante de una cadena de contagio, sino de una única persona que contagia a muchas.
Ilustración: Manuel Álvarez García
Los coronavirus causantes de epidemias graves similares a la actual (el SARS de 2003 y el MERS de 2012) producen epidemias transmitidas en racimo. Este parece ser también el caso de Ccovid-19. ¿Cómo podemos medir la tendencia a la propagación en racimo? Para esto, hay un valor llamado factor de dispersión (k) en el que valores bajos próximos a 0 indican un gran efecto de los supertransmisores, mientras que valores próximos a 1,0 indican que su papel en la progresión de la epidemia es mínimo y que los contagios son por cadenas, no por racimos. En los casos del SARS y del MERS los valores de k fueron 0,16, y 0,25, respectivamente, como corresponde a su gran tendencia a la propagación en racimo. Por el contrario, el valor de k estimado en la pandemia de gripe de 1918 está muy próximo a 1,0, lo que sugiere que no se dispersó por supertransmisores.
¿Cuál es el valor de k para Covid-19? Los valores disponibles actualmente son todavía estimaciones provisionales. Algunos son similares a los del SARS o MERS; pero hay un estudio reciente que obtiene un valor k de 0,1. Si este fuera el caso, en torno a un 10% de los infectados sería responsables del 80% de los contagios: solo algunas personas infectadas serían muy contagiosas mientras que la mayoría no transmitiría la enfermedad.
Este patrón de transmisión es coherente con las observaciones de casos de covid-19 anteriores al inicio de las epidemias locales. En una enfermedad transmitida en racimo, muchos casos no generan epidemia y el patógeno debe entrar varias veces en el grupo antes de infectar a un supertransmisor que establezca y acelere la epidemia. Hasta ese momento, la enfermedad tendrá un R0 mucho menor de 1,0 y no se establecerá en la población.
Es necesario confirmar si covid-19 se transmite en racimo y, en su caso, determinar las características individuales y las actividades asociadas a la supertransmisión. Identificarlas permitirá reducir y controlar la epidemia manteniendo R0 en valores inferiores a 1,0 y reducir el impacto de los rebrotes de la enfermedad. Las medidas de confinamiento reducen eficazmente el efecto de los supertransmisores (que podrían ser un 10% de los infectados) con el coste de restringir la movilidad de toda la población. Para identificar las personas y condiciones de supertransmisión, es necesario incrementar el número de análisis de presencia del virus (PCR) y de anticuerpos y complementarlos con otros datos epidemiológico y de forma de vida. El análisis de esta avalancha de datos analíticos y epidemiológicos en busca de patrones permitan identificar a los transmisores y su comportamiento permitirán hacer más eficiente nuestra lucha contra esta pandemia y contra las que vendrán en el futuro.
Ya es tarde. Otro día volveremos sobre el tema de los supertransmisores y sobre las primeras ideas que hay sobre sus características. Espero que lo conversado hoy les aporte alguna idea sobre esa pregunta que tantas veces nos hemos hecho estos días: ¿cómo puede ser que en esta o aquella familia haya una persona que ha pasado Covid-19 y ninguno de los otros miembros de la familia se ha contagiado?
Mientras tanto, cuídense.
Nota 1: listado de artículos del catedrático Antonio G. Pisabarro De Lucas sobre el coronavirus.
2. Coronavirus: ¿cómo es el «malo» de esta película?
3. ¿Quiénes son las primeras víctimas del ataque del coronavirus?
4. ¿Cómo nos invade el virus? El primer encuentro del virus con nuestras células
5. ¿Cómo secuestra el coronavirus la célula?
6. ¿Cómo sabe el sistema inmune que una célula está infectada? Diario de la resistencia. Día 1
8. ¿Qué es la tormenta de citoquinas? Diario de resistencia ante el coronavirus
9. ¿Cómo se producen los anticuerpos contra el coronavirus?
13. ¿Por qué se producen las epidemias? Preguntas esperando respuestas
15. Transmisores y supertransmisores Preguntas esperando respuestas (presente artículo)
16. ¿Cómo podemos seguir adelante en un mundo con el coronavirus SARS-Cov-2?
17. ¿Vacunas, qué vacunas? Preguntas esperando respuestas
Nota 2: las personas interesadas podrán plantear a investigadores de la UPNA cuestiones relacionadas con el coronavirus o el estado de alarma a través del correo electrónico ucc@unavarra.es, incluyendo en el asunto #UPNAResponde/#NUPekErantzun.